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FOREWORD 

An investigation was initiated in 1950 of the problems involved in 
the design of an automatic pressure control system for the Engine Test 
Facility and Ram.-Jet Addition, Arnold Engineering Development Center. 
An analysis of the plant was made, and the performance of all compo- 
nents of the control system was specified. 

Individual responsibilities for different phases of the investigation 
are as follows: 

G. V. Schwent - determined  the  basic   schemes   of   analysis and 
directed the study. 

D. W. Russell - supervised work on distributed parameter equa- 
tions and completed the lumped parameter analysis. 

W. K. McGregor and L. F. Burns - derived distributed parameter 
equations and determined the frequency response solutions. 

Roger Messick - obtained the indicial solution to the   distributed 
parameter equations. 

C.  T. Coffee - contributed suggestions and directed the mathema- 
tical calculations. 

The report was compiled by Mr. McGregor. 
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ABSTRACT 

response of gas flow systems on both a lumped parameter and a dis- 
tributed parameter basis. The laws of physics which apply to gas flow 
are derived, and from them the differential equations which govern the 
system response are developed. The methods of operational calculus 
are used to solve these equations for the case of sinusoidal and indicial 
forcings. The various implications of these solutions with their bearing 
on control of pressure variables are discussed. Examples are pre- 
sented in the appendices to add clarification to the method and its im™ 
plications. The report correlates existing knowledge of gas flow 
systems as a basis for formulating an inclusive reference to be used in 
the design of gas flow systems having desirable dynamics and in the 
design of control systems« 
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NOMENCLATURE 

The gravitational, dimensional system will be used throughout. The numeri- 

cal unit system of Appendix 3 will use the British units; pounds force, feet, 

second, degrees Rankine. 

A Area of valve restriction 

A0 Duct cross-sectional area 

A*, B*, C*, B*, E*, F* - Boundary value functions of s or ja 

C Lumped pneumatic capacitance 

G Magnitude ratio (or gain) 

K Arbitrary constant 

L Total length of ducting 

M Mach Number 

P Absolute pressure 

Q A defined function of s, Q = (r + hs j 

R Ideal gas constant;   In Apperidix 3, R = 53.3 ft/0/? 

ft* Residue 

U Velocity of moving fluid in a duct 

V Volume 

W Weight flow of gas 

W* Weight of gas 

Z Terminal pneumatic impedance 

a Incremental change   (or   small  perturbation)   in valve 
area from the steady state value,  A 

b Used in definition of e 

c Distributed pneumatic capacitance 
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/ Function of one or more variables 

h Distributed pneumatic inertance 

/ The quantity    \f-f 
t 

k Assigned constant denoted by subscript; integer without 
subscript 

n Integer 

P Incremental change (or small perturbation) in pressure 
from the steady state value,  P 

r Distributed pneumatic resistance 

s The Laplace complex operator 

t Time 

u Velocity of pressure wave propagation (velocity of sound) 

w Incremental change (or small perturbation) in weight flow 
from the steady value,   W 

x Distance 

y Distributed pneumatic admittance 

z Distributed pneumatic impedance 

a, ß The real numbers defined by  \/zy~= a + jß 

y Ratio of specific heats (y = 1. 4 for diatomic gas) 

£ A defined quantity 

e The quantity Lim (1 + x)^x , or 2. 178  . . . 
X -* o 

C The dimensionless damping  ratio   of  a   second  order 
differential equation 

T Integer 

0 Absolute temperature 

9 Incremental change (or small perturbation) in absolute 
temperature about the steady state value 0 

* Wave length of a sinusoidal pressure wave 
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Z   - #   Q 

z + #  Q 

The factor 3. 1416  . . . 

Gas density 

The quantity defined by   e2an =  - 

Time constant 

Phase angle 

Angular frequency of oscillation 

Subscripts: 

Numerical subscripts 1, 2,  3 etc., and alphabetical subscripts a,  b, c, etc., 
are used principally to distinguish between like expressions such as /, k, and w. 

Alphabetical subscripts i, o, and x are specifically used to designate stations 
--i being used to designate inlet and o to designate outlet. 

dp       ' 
Dot Notation   is used to express derivative with respect to time, e. g., 

dt 
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INTRODUCTION 

Many industrial organizations have undertaken extensive analyses of their pro- 

cesses in order to determine more exactly their control requirements. One of 

these processes concerns the control of pressure and flow of gases through sys- 

tems of ducting, referred to as gas flow systems in this paper. An example of 

such a system is a wind tunnel in which airframe models or power plants are 

tested under accurately simulated Mach number and altitude conditions. 

Fundamental to the design of a. physical plant and its control system is knowl- 

edge of the behavior of variables in the system in response to various disturb- 

ances. An understanding of the change in behavior which results from varying 

the different factors and properties of the physical design is also required. 

Methods of acquiring this information for gas flow systems are developed in sub- 

sequent sections. 

This report assembles the applicable physical relations and formulates the 

response of pressure in gas flow systems to expected disturbances. There does 

not exist a treatment of this problem of sufficient scope and clarity to be useful 

to the control designer. To be sure, the laws of physics which apply are not new 

and may be found in various textbooks on thermodynamics, aerodynamics, acous- 

tics and fluid flow. However, the objective of this paper is the use of these laws 

and their formulation into a useful tool. The principal applications of previous 

investigations of gas flow dynamics have been concerned with such things as 

pressure measurement instrumentation and acoustic muffler design. The mathe- 

matical similarity between the laws of gas flow through ducts and the laws of 

electricity affords an analogy that has been used advantageously by previous in- 

vestigators (Ref.  1). 

11 
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The principal difference between this work and existing ones on the same 

general subject is that here the gas flow rather than pressure is considered as 

a forcing function. This is necessary in an analysis for control system design 

because both the major disturbance and the manipulated variable are gas flows. 

The methods of operational calculus are used in this report because of the 

uniformity of expression of the different concepts and because of the almost uni- 

versal use of the Laplace Transform and transfer function notation in the synthe- 

sis of control systems. The frequency response and indicial response are used to 

express the behavior of a system. In general, the treatment here utilizes the 

methods of analysis employed by texts on feedback control systems and thus is 

directly applicable to the synthesis problem. 

12 
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THE GOVERNING LAWS OF PHYSICS 

Any physical system is governed by certain laws which may or may not be 

formulated in mathematical expression. For the gas flow system treated herein 

these laws are quite simple to formulate since sufficient assumptions are made 

so that "classical mechanics" hold throughout. By a gas flow system is meant a 

connected system of ducting and restrictions through which a gas is forced to 

flow.   General assumptions which must be made are as follows: 

1. The flow is assumed to be geometrically one-dimensional and is distrib- 
uted continuously and uniformly over the whole duct area, being a con- 
tinuum. 

2. Dissipation by radiation and thermal conductivity is neglected. 

3. The fluid is a pure diatomic gas which obeys the ideal equation of state. 

The pressure of a gas flowing in a duct is a function of both time and dis- 

tance. If the space variable is neglected, the energy storage is said to be 

"lumped", and the system is said to be a "lumped parameter" system. If the 

space variable is not neglected, the system is a "distributed parameter" system. 

The equations resulting from an analysis of a "lumped parameter" system are 

ordinary differential equations with respect to time; those resulting from a 

"distributed parameter" analysis are partial differential equations with respect 

to both time and distance. In general, the coefficients of these differential equa- 

tions are not constant but depend on the pressure, flow, and temperature 

in the system. The small perturbation theory is utilized in order that these 

coefficients may be treated as constants for a given operating point. 

THE  LUMPED  PARAMETER   EQUATIONS 

Three elements are encountered in a lumped parameter system: energy 

storage in a volumetric capacitance, flow through a compressor, and flow through 

13 
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a restriction.   The relations which govern flow and pressure in these elements 

are derived as follows: 

Pressure - Weight Flow Relationship in a Volume 

Consider the volume V in Fig. 1 through 

which a gas at pressure P and temperature ® 

is flowing at a rate  W.. 

The assumption is made that tempera- 

ture and pressure are instantaneously the 

same   anywhere   in  the  volume.   Then, the 

rate of change of density of the gas within the volume is the difference in  weight 

flow into and out of the volume divided by the volume.   That is, 

(1) 

W, 

FIG. 1.    SCHEMATIC OF VOLUME V 

dp vt- v0 
dt v 

The equation of state for a perfect gas is 

P 
P = 

(2) 
Re 

Differentiating equation (2) with respect to time and combining with equation (1) 

yields the general relation of pressure and flow in a volume, 

^-*>-^-{^-§®)  • (3) 

where the dot notation is used to denote derivative with respect to time.   If the 

changes of state of the gas may be considered as   isentropic   processes, then 

-   ->- (4) 
_ y - 1 

/JQ =  const , 

and equation (3) reduces to 
(5) 

This latter condition that the processes be isentropic can be satisfied by al- 

lowing the variables to change in small perturbations about some steady state 

14 
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value.    That is, 

P-P.S+P 

*i = Was + wi 

Vo = Wxs + 

8 = ®ss + * 

If these perturbations,  denoted by the lower case letters,  are sufficiently small 

the processes are essentially isentropic.    Making this assumption and defining 

C 

we obtain 
yR&s 

1 i \ p = -£"H " W0>- (6) 

On making the Laplace transformation on the variables of equation (6), 

p(s) = —    u>i (s) - i% (s)  . *   ' 
Cs   L J 

The quantity C is the lumped, pneumatic capacitance of volume V. If 6 is small 

this capacitance will be constant. It should also be noted that if the process were 

isothermal rather than isentropic the ratio of specific heats, Y, would be re- 

placed by unity. Thus, C may vary by a factor from unity to 1.4 depending on the 

degree to which the process can be said to be isentropic. 

Pressure - Weight Flow Relationship in a Compressor 

In any gas flow system there must be some method of forcing the gas to flow 

through the volume. The device which accomplishes this is usually referred to 

as a compressor if it forces gas into the volume and 

as an exhauster if it draws gas out of the volume. 

The flow through this device is a function of many 

variables. Each compressor, or exhauster, is char- 

acterized by a unique set of performance curves which 

Pi.e. w o'  o 

FIG. 2.    SCHEMATIC OF COMPRESSOR 

show flow as a function of the pressure ratio across 

15 
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it for different values of inlet temperature.    Thus, 

W = f(Pi,P0>eO- (8) 

Taking the differential of flow yields 

dW = dPi + dP0 + -z^-^i • 
dPi dP0 d®i 

Making use of the theory of small perturbations so that   linearity  is   assured 

w = kePl + kcp2 + kt e, (io) 

where the following definitions have been made: 

ui = aw kp   =   —rrr— 6 dPt 

Pi   -   dPi kc   =   -fir- 

e m d&i kt =    dW 

d®i 

The constants denoted by k must then be evaluated at each operating condition 

from performance curves. 

Pressure - Weight Flow Relationship in a Restriction 

Control of pressure in a gas flow system is accomplished by control of flow 

at some point; this in turn is accomplished by controlling the area of some re- 

striction, usually a valve of some configuration, at that point. In general, the 

flow  through   a   restriction  is   dependent   on - T^r^rj^ 
upstream pressure, downstream pressure,         ■ ' W 

temperature, and the open area of the restric- F,G- 3-  SCHEMATIC OF RESTRICTION 

tion.    That is, 
W ^f(.Pi,P0,@i,A) . (11) 

Taking the differential and using the theory of small  perturbations as before, 

w «= kiPi + koPo + kß 6 +  kaa, (12) 

where the following definitions have been made: 

16 
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w = dW 

p.  =  dPi 

Po   =  dPo 

6   =  d®i 

a   =  dA , 

k = ^i 

K = 
dip 

ap0 

*e = dW 
901 

z_  - dW 
dA 

These   constants   depend  upon  knowledge   of  the   valve's   pressure-flow- 

temperature relationship, which may be expressed either by families of curves 

or by approximate mathematical expressions.    A method is given in Appendix 1 

whereby these constants may be determined for some types of valves.  This meth- 

od, with sufficient experimental data, can be extended to any valve configuration. 

THE DISTRIBUTED PARAMETER EQUATIONS 

Consider an element dx of a straight duct of constant cross-sectional area A0 

in which a compressible fluid of density p and at pressure P is flowing at a rate 

W  and velocity [/as shown in Fig. 4.    The quantities are shown at any instant of 

time  t.      The   partial   differential 

equations which describe the pres- 

sure-flow relationship are derivable 

from an expression of the continuity 

equation and a  net force equation. 

dx 

r | 
I 

P  I 

W 
I 

u 

P + ~ dx dx 

I W + |^ dx 

I u + |y dx 

I I 

FIG. 4. SCHEMATIC OF INCREMENT OF FLOW IN A DUCT 

17 
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The continuity equation states that the rate of decrease of weight within the 

element of volume   A0dx    is equal to the net rate of weight flow in the element, 

-4F=(*   +   £*>-*   • (13) 

The weight of gas in the volume is the density times the   volume   and  hence, 

W*   =  (p  + ~Y~ dx)A0dx. 

Neglecting the higher order terms yields 

_iE!   =JSLAfdx , (14) 
at       dt   ° 

Equating (14) and (13) yields 

_   M- =    A    JE-    . (15) 
dx dt 

The process is assumed isentropic as  in the   case   of  lumped  parameter 

equations.   For isentropic processes  all fluid state's   have   the   same   entropy. 

This fact can be stated as follows (see Ref. 3): 

dP =    dP_    = j£_ 
dP /constant dP 8 (I6) 

lentropy J 

where u is the velocity of propagation of a pressure disturbance.   The equation 

of continuity can then be stated as 

_ dW       Aog    dP  = c i*L8 (I?) 
dx u2 dt dt 

The net force acting on the fluid within the elemental volume is equal to the 

mass of the fluid times acceleration.    The mass of fluid in the volume is 

—   = -i-(p   + -§2— dx)A0dx- 
8 8 dx 

The velocity of the incremental volume is 

U = -.  +  (- )dx 
AoP dx AoP 

and the corresponding acceleration is 

du       d   (JL) ♦ -±- [4- (-/-) dx dt dt        A0p dt       L dx A0p 

The net force is then 

JM8- 

18 
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dw 

dx 
=   c 

dp 

dt 

dp =   h 
dw 
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Upon  simplifying   equation (18) and   neglecting  the   higher   order terms   in  dx, 

■t equation (18) reduces to 

_jP__    p 4fj 1 dJ-^JLJ^. (19) 
'■v. dx        A0g        dt gA0       dt AoPg      dt 

In order to handle equation  (19)  advantageously, it is necessary to assume that 

total velocity of the gas stream is small.    Then,   the last  term of equation   (19) 

can be neglected and 

_    dP     1_     _dW_ (20) 
dx A0g        dt 

If the quantities   are   treated as  small perturbations about a steady   state 

value as in the lumped parameter treatment, then equations (17) and (20) become 

(21) 

(22) 
dx dt 

There also occurs a loss in pressure with distance due to various resis- 

tances. To include this term apparently contradicts the assumption of isentropic 

processes made previously. However, change in enthropy with distance does not 

preclude an isenthropic compression in an incremental element. This pressure 

drop along the duct can be taken as being a function of flow.   Hence, over a. small 

incremental change (again using the small perturbations): 

dP dP       dW —   =   » 
dx dW dx 

or 

dp AP (23) 
dx hWäx 

Combining this additional pressure drop with that of equation (22) yields 

.J^ = hJ^ + rW. (24) 
dx dt 

The quantities c,  h and  r  are usually referred to as the distributed pneumatic 

capacitance, inertance and resistance,  respectively. 

19 
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A SIMPLE  SYSTEM 

The use of the foregoing physical laws can best be illustrated by means of 

an example. It is in the response of a system that the correlation between 

the lumped and distributed parameter descriptions of system dynamics can best 

be seen. The treatment will also be useful since the simple system to be used 

is a sufficient description of many processes, 

The system to be studied is shown in Fig. 5. In Fig. 5(a) the system is 

represented as a lumped parameter system. A gas flows into volume V through 

some restriction or device 

at a rate IPf and out through 

another device at a rate  W , 
o' 

with a pressure P and a 

temperature®. In Fig. 5(b) 

the system is represented 

as a distributed parameter 

W; W, 

FIG. 5 (a).   LUMPED PARAMETER SYSTEM 

.system, Thegas^Iows into 

a straight duct, of Length L 

and of cross-sectional area 

40 (such that F = A0L), from 

i  dx   r 
W; 

I I 

FIG. 5 (b).   DISTRIBUTED PARAMETER SYSTEM 

w, 

the same source as in 5(a) and out through the same device as in 5(a), maintaining 

the same steady state pressure and temperature. 

The flow into the system is an independent variable. The flow out of the 

system is considered to be proportional only to the pressure P. Temperature 

is considered constant in the evaluation of the capacitance term. 

20 
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PRESSURE  RESPONSE   TO  AN  INFLOW DISTURBANCE  AS DETERMINED  BY THE 
LUMPED  PARAMETER  EQUATIONS 

Two equations describe this system according to the linearized,  small per- 

turbation theory presented previously: 

1       r   —  -  »„(->]   and (25) 
p(s) = ■Cs 

wj(s) 

wo(«)   =  *0P(S)' (26) 

where C and  &0 
y/?0 dP 

system transfer function, 

dW W 
——  =  s£- •   Combining these equations yields the 

P-(s) 1/Ar (27) 
C . ,rs   +  1 

-—s + 1 

The gain of the system is K = —— and the time constant is r 
FP ss 

y/?®^ ,r ss 

Frequency Response 

Of interest in the synthesis of control systems is the frequency response 

of the system to be controlled. Replacing s by ja the frequency response of 

transfer function (27) can be determined. The straight line approximation of 

this frequency response is shown in non-dimensionalized form in Fig. 6. 

Q-3 

FIG. 6.   LUMPED PARAMETER  FREQUENCY RESPONSE 

21 
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Indieial Response 

The usual manner of showing the time response of a system is to express 

the time solution to a step input, sometimes referred to as the indicial response. 

In mathematical form this is 

P 
KQ = 1 - 

-1 

T 

The graph is shown in Fig. 7. 

(28) 

FIG. 7.   LUMPED PARAMETER INDICIAL RESPONSE 

PRESSURE  RESPONSE  TO AN INFLOW DISTURBANCE  AS DETERMINED  BY  THE 
DISTRIBUTED PARAMETER EQUATIONS 

The solution of equations (21) and (24) to sinusoidal and indicial forcings 

yields the distributed parameter response of the example system. These two 

solutions are sufficiently dissimilar to require separate treatments. The first 

uses the standard ja operator, whereas the latter must employ the Laplace 

operator. 

Frequency  Response 

Suppose the quantities w and p of equations (21) and (24) to be small sinusoi- 

dal perturbations. The impedance notation commonly used in the study of steady 

state electrical alternating current can then be used and the equations become 

JP     =   ,w„    =   vn (29) 

~b 

dw 
dx 

dp 

dt 
jmcp   = yp 

dw 
      := rw +  h    -^— =   (r + jcoh)w  =  zw (30) 

OX 01 

where  y and z are the pneumatic admittance and impedance, respectively, while 

22 
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jm is the complex frequency operator. It should be noted also that equations (29) 

and (30) differ from equations (21) and (24) by a minus sign since here it is con- 

venient to measure distance from the outlet end of the system. 

The analogy between the distributed parameter gas flow system and an elec- 

trical transmission line can be observed through examination of equations (29) 

and (30). 

Taking the derivative of equation (30) with respect to distance yields 

i% p du> 
z 

dx1 dx 

or 

d'p 

zyp 

dx2 

A solution to this equation is 

- zyp = 0 (31) 

p    = A*e   -^ + B* e-*V*r (32) 
x ' 

(33) 

-XyfzJ 

and from equation (29) 

where A* and ß* are to be determined from boundary conditions. For the system 

under consideration, at * = 0 , px - p0 and wx = w0. After evaluating A* and ß* 

and simplifying, the solution can be written as 

px (/«)   =  P0    cosh x\ßy    + "'cA/lr   sin'1 *V ZY (34) 

wx 0'«") = w0    cos*1    xyfzy~+ p0\[—   sinh    x^/Jy (35) 

As mentioned previously the disturbance to the system is a flow oscillation, w{ „ 

at x - L. Hence, we desire the pressure response to this disturbance at any po- 

sition in the ducting.    Making the definitions 

Z   =     dpo Po     =    S° 
dW0 «>0 W0      ' 

\ßy~  =  «    +    iß  , 

23 
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where 
ß =    \j%(oc [co h   + V«2 h2 +~~71]    , 

2ß     ' 

and using certain trigonometric and hyperbolic identities, equations (34) and (35) 

may be manipulated to give 

wi (joy) /, + / f.      ~    Gxlt* ' <36> 

where 

G*     =        /-£—L-7T' <37> 

^=   Tan"'   ' -L Tan"1    -J±-, (38) 

and the functions of j<o are given by 

f.   =    Z cos (/3* ) cost (a*) +  ——— cos (ßx)   sinh (a*)  +   sin (ßx)  cosh (a*) 
CtiC (ÜC 

f,=    Z sin(ßa;)   sinh  (ax)  + —-— sin (ßx) cosh (ax)   -   cos    (ßx) sinh (ax) 

7 o 7 
/3  =  cos (ßL) cosh (aL)  +    j   ^°"       cos (ßL) sinh  (aL) a» +™z     sin  (ßL)   cosh  (al) 

/4 =   sin (ßL) sinh (aL)  +     -j-^L    sin (ÖL)   cosh (aL)  +      f aca,   cos (ßL)sinh(aL)  . 

Thus, equations (36), (37) and (38) give the frequency response of the system 

of Fig.  5 (b) at any position x, where x is measured from the outlet. 

Considerable simplification of this complicated frequency response function 

results for the special case of zero resistance (r = 0). Then ß = m/u, a = o and 

the functions of ja become 

/,  =  Z cos ßx =  Z cos -5L x /j  = cos ßL  = cos -£- L 

y   =   J_ sin/3* =  J- sin-^-* fA  =  Z-^-sinßZ, = Zcusin-^-L /2 cue ^ «c u '* ß u 

At «: = 0, /, = Z and U =0. The functions /a and f\ range from maxima to 

minima at ßL = n n/2 , where n is any integer and for r = 0, ß = -jj*-, owing to the 

nature of the trigonometric functions. This occurs at such values of frequency, 

<u, such that L is equal to some multiple of a quarter wave length.    That is,  at 
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L = -^- X =-.   n g u .f  and CüC= —^-^ where «c is denoted as  a "critical" frequency. 

From this alone, the maxima and minima of the frequency response can be deter- 

mined.    This treatment yields the same information when applied to the position 

x = L,    Thus, the frequency response plots of the distributed parameter system 

can be approximately determined as shown in Fig. 8. 

Indicinl Response 

The methods of the transformation calculus can be used to obtain the pressure 

response to a step disturbance in flow. By obtaining the Laplacian transform of 

response, finding the singular points and residues of the transformed equation 

and applying the "inversion Theorem" (see Ref. 4), the time solution can be e- 

valuated. This process will be applied in this section to equations (21) and (24), 

since here it is convenient to measure x from the inlet. 

Differentiating equations (21) and (24) with respect to distance and time re- 

spectively yields 
-   _Ü2L - c    d'P /oqy 

dx>      -C^Tdx^' <39> 

d2p ,     d2u> dw i,~\ 
~ IxdT = h -dp- + '" ST i (40) 

or, upon combining 
d2w       ,      d2w dw IM\ ■=  he -r-ä— +  re    —— . 141) 

dx*     ~        dt2      '   '"    dt 

In a similar manner, differentiating equations (21) and (24) with respect to time and 

distance, respectively, and combining, yields 

mM.rM. (tf),..- ES...-°- 
then the Laplace transformation of equations (41) and (42) yields 

d%Wj£%)     =  (has* rc)s w(s,x) , (43) 

d* P
d^

,x)     =  (hes + rc)s p(s,x) . (44) 
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FIG. 8.   DISTRIBUTED PARAMETER FREQUENCY RESPONSE 
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These equations have the solutions 

u,(s,x) =  C*e (Äcs* + rcs^ * +  D*e~{hcsl + rCs)* * 

p(s,x) = E*e(hcsi+rcs^*+F*eAhcs2 + rCs)V'X 

AEDC-TR-55-11 

(45) 

(46) 

The total length of the  system is taken as  L.   At * = L,   w{s) = wQ (s),   and 

Po}s) 
o 

p(s) = p0(s),    In addition,   the "terminal impedance" is defined by Z =  -   , > 

and it is also expedient to make the definition 

Upon evaluating C* ,  D*,  E* and F* as functions of s,   equations (45) and (46) be- 

come 

tu(s;x) = "o (*) 

p(s,x) = 

!<?# 

u>o (s) 

(z + o>ff).0 ^-«•'-*)- (z-o/?)--0^ s(L-z) (47) 

/z+  Qyff\eQ V^ «a- *) +   (z-Q\ff)e-Qy/T°s{L-x) .    (48) 

The transfer function of pressure to flow disturbance can then be written  as 

J* (49) 

If the disturbance occurs at  * = o,   the transfer function can be written as 

/Z+Qyß^\     Q VÄ7 s(ZL-x) Q   yjhc  sx 

P(s,x)    _ JT       \z-g Vr 
+ e 

+ g -y/A \ 2Q    \/hc  sL 
(50) 

vz-e^/f, 
It is convenient, here, to introduce the relation 

2ffff ^ ~      V c       x 

^^0 
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Then 

pis^x)     JA o 
w(s,o)           ^ c 

Q^Jhc s{2L-x) -2 
e 

2() V/tc SL - 2 an 
e 

Q V Ac     s £ 

 (51) 

-1 

It is now expedient, if the mathematics is to be kept simple, to examine the 

case r = o, therein making Q equal to unity. The solution is desired to a step in 

flow; that is, wi (s) = w% _•    The poles of equation (51) are (1) s = o and 1 s 

/owv, ,       c     2syfte L - 2o7T        in jk 
(2) the roots of e = e       = 1,     which are   s =   =i    (a + jk), 

vhc  L 

where     k = 0, ±1, +2, — 

The residues at these singularities are then 

1. R* = Z 

I±{a+jk) -nL^+jk) 
2. R* _   _L +[h~ e  + e L  

2n   M c a + jk 

jknx 
1   A / Ä     a- jk L i     tf a* 

=   — \—    —~T e cosh   T-  ' 

where the simplification of R* is obtained by using    ^njkx/L   =    (e2njk)L   = i< 

The inverse of the transform is obtained by summing the product R*es   at 

each singularity.    Then 

&   = + °° —- (axjk) t 

Pi*, g     =VÄ*est    =    Z+  V     ~\ff   g"/A     e/ffWLcosh   » .*L e   ^L .    (52) 

A      =    -   OS 

By introducing the identify 

jnkx/L i)k    -jr)nk    j„kx/L .      4~ (*->?£) 
= (-1}     C C "   W)     e ,  = 1,3,5---. 

equation (52) becomes 

PU, *)        7i    KIT.    ,    77(7*    V7*c L      \^ ff - ;Ä     ,  ,,i    „ v^t *53) 
n-    v c I /  s      a

1 + k1 
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Expanding equation (53) yields 

not 

p(x, t) 
wi 

= Z +  -L \f± cosh £2fL   e 
n    Vc L 

he L 
2(7 

oo 

1 X        /     i\ ^      COS   I kd* 
kz 

+ 2 v,.„ k k sin kd * 

a    + 
(54) 

where Ö* = n    [t + \/hc   {% - rjL) ] .    This form brings to attention two Fourier 
VÄc   L 

series identities which can be written as 

C08h ae* = -^isinh „[■£■ +   ^(-D* g
c,0B

+*tr] 

inh ad*  = -    -J-    sinh 

where-jr< 0*<7T.  Substitution of these identities (Ref. 5) into equation (54) yields, 

after simplification, 

trat 

p(x, t) 
Z + v c 

he L 
cosh 

sinh an 

nax 
_L_  e-o6\ 

(55) 

The boundary placed on 6* requires that for each rj, t be confined to the region 

L 0,-1) -* < t <   VAC" L 0/ +1) - * 

Allowing    7/ = 2 n+1 where  n = 0, 1, 2, — and remembering the definition of 1cm for 

(? = 1,   equation (55) further reduces to 

w  "       2 Lz" VT J 
,nr\f 

1 + '       Vc 

-# 

& 

pr- 

v c  . 

(56) 

A further reduction results from letting 8 =^-~- , 

P^L = i _ i a _ s) i + 

X 

(i+S\L 
\l-8 / 

1-5 
1 + 8 

(57) 
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where « = 0, 1, 2, ,   and 

VÄc~ (2 nh- x)<t <   \Ihc       2 (n + 1) L - x \ . 

For the two positions of  interest,   x = o, and x = L,   the   solutions   are   as 

follows: 

Pict)     1        a-S)n + 1 (58) 

for    * = o ZKf     "    <! + *>"      J 

2n  (       '       (  2(n + l) 

for   * = L 

-»(TxrrX0"» 

p(L,*) 

CORRELATION OF  LUMPED AND DISTRIBUTED PARAMETER ANALYSES 

An examination of the distributed parameter frequency response discloses 

that   for   small values of the frequency variable  <u the lumped and distributed 

parameter responses are equivalent.   In order to show this, equation (27) can 

be written as p 
P (/eu) T 

■*</»>   -JZ_(Aa) + 1 
yR9W    ' (60) 

For the special case r = o equation (36) can be written as 

R 
P(jco) h + jf, Z cos ßx + i-ää sln ß* 

">I(/ö>) A + /A cos ßL+ jZ~ sin ß£ 

For values of m << ±,  cos/3Ä=l,    and sin/S^ßa.   because   ßx < ßL = -^-  « 1. 

Thus, 

aye coc 
(61) 

WJ(/O>) l + i      <ac flf,        1 + j Z CöCL 

'     ß 
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P As 
Now,  remembering that ß =— for r = », Z = -—, c =—?—,   u2 = ygtf© and LAn =  P, 

u IP u1 

equation (61) can be reduced to 

-£- + / -&L 
P (;<a)    _.     y aC (62) 

»i (/") _PÜ (/a) + ! 
yRQIP   ' 

1 P Since ßx «1 and —< —- (Fig.  8), equation (62) reduces to equation (27). 

The deviation of the distributed parameter frequency response from the 

lumped parameter begins to become excessive for frequencies just below the 

first critical frequency (ö,C = -^-). As previously noted the break in the lumped 

constant frequency response occurs at <u& =   — =   v®   .   The ratio of these is 

yR&W 

"*   _     ~PV~    . (63) 

2L 

This expression reduces to 

Ü.?Lu (64) 

where M is the Mach number of the gas flowing in the system. The constant lyh 

is about unity so that the ratio is about equal to the Mach number. If the ratio is 

small the deviation occurs far down on the frequency response gain curve; if the 

ratio is large the deviation occurs early on the frequency response plot. 

Examination of the indicial response indicates that the solution (56) can be 

reduced to the lumped parameter solution (28) by the following treatment. Sup- 

pose the ducting length L tends to zero while the volume L A0 remains fixed. 

Then -j- tends to unity,  A0 tends to infinity,   v—  = -~— tends to zero,  and thus 
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8 approaches zero.    The limit on time may then be written as 

(2»- ±)(-di([2("^)-r]- <65> 
For any fixed time  t as  L  approaches zero,   n tends to       ————  .   Then 

2 he L 

"i -m t 

Yj—T- i-\—r) • (66) 

i 
Now, remembering that    Lim (1 + 6*)* = eb 

X ■* o 

it is convenient to write 

,        8t 
P (*, t)      ,     [7 i - s\s l2 VÄ7t 
ziu.,-1 "     Lw^r J Z ,»,j 

then 

(W- 
i i 

(1 + 8)      (1-8) 

Letting   6=1   and   b = -1  ,   respectively. 

1 

Lim     ( 1 — 8 \         -a 

S-+o   V 1 + 8)   ~        ' 
v          '                    t t 

sfhc~L 
?(*>t)               \           r       8                      1 

yR®W 
-e       PV 

(67) 

\fhc   T PV since the quantity — —   can be reduced to   ———•   , which is the time constant 

r , equation (28). Thus, the distributed parameter solution can be reduced to the 

lumped parameter solution if the length of the ducting is made small and the area 

large. 
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OBSERVATIONS ON  THE  RESPONSE  EQUATIONS 

There are a number of interesting observations that can be made on the a- 

nalysis so far. The treatment has been chiefly analytical without regard for 

physical concepts. This section is devoted to observations on the nature of the 

different properties of gas flow systems as revealed in this analysis. 

NATURE  OF   THE  FORCING  FUNCTION 

The forcing function, or disturbance, considered in the illustrative example 

was a change in flow into the system at the inlet. This disturbance is the 

major forcing for many systems, including the exhaust system of an engine 

test plant. One might as easily be concerned with disturbances in inlet or out- 

let pressure, in valve area, or in parameters such as the volume of a bellows. 

In any case the method of treatment would be similar so that the analysis might 

be used on such varied problems as pressure response of instrument lines and 

transducers, acoustical design of mufflers, analysis of pneumatic control ele- 

ments, and the dynamic analysis of wind tunnel performance. The specific 

discussion is limited to changes in flow or valve area, 

NATURE OF  THE  RESPONSE 

The response desired of gas flow systems is nearly always the pressure 

change due to some forcing. In system synthesis for control purposes the steady- 

state response to sinusoidal forcing and the time response to step function 

forcing are usually sufficient to adequately describe control characteristics. 

Depending on the nature of the problem, varying degrees of completeness of the 

response maybe needed. For some problems only the lumped parameter trans- 

fer function may be required.    For others the complete distributed response to a 

step or other function may be required. 
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The Lumped Parameter Transfer Function 

In the description of systems, perhaps the most informative knowledge is an 

expression of the linear, non-dimensionalized transfer function. One sees in this 

expression the sensitivity of the system (gain), the degree of complexity, or or- 

der, of the system, the magnitude of the time constants, and the degree of sta- 

bility to be expected. Fairly accurate knowledge of these is in many instances 

sufficient for the design of control systems. 

Formulation of the lumped parameter transfer function is illustrated by the 

system shown in Appendix 2. The equations governing lumped parameter are 

shown at their respective locations, and the transfer function resulting from the 

combination of these equations is also shown. In the system of Appendix 2, a 

flow of gas Vi enters the volume Vlt passes through a control valve system into 

volume V%, and is pumped out by an exhauster which has a recirculation line 

around it. The control valve system consists of a throttle valve and a bleed 

valve. The inlet flow is an independent quantity which deviates from a steady 

state. The pressure response to this deviation is desired. The simultaneous 

solution of all the transformed equations which describe each system element 

yields the transfer function. 

There are several interesting properties of this transfer function. The 

system contains two energy storage elements, the two volumes; and hence 

a second order denominator in the transfer function is assured. The system 

constants are all real, positive numbers; and this assures, for the second 

order system, that the system will be stable. Furthermore, when the trans- 

fer function is written in the form shown, where <urt is the natural frequency 

and C is the damping ratio, it can be shown that C, is always greater than unity, 

thus assuring that the system is over-damped. This also assures that the 

denominator has two real roots and can be expressed as the product of two first 
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order lags, (rs s + 1) (r4 s + 1) . Now it can also be shown that r3 < r, < r4 and that 

rs< T%<T*. This guarantees that the log magnitude -log frequency curve 

never has a positive slope and that the phase shift is never greater than -90° for 

the two responses to valve area changes and the response to flow disturbance. For 

the surge valve area change, again the amplitude frequency response always has 

negative slope, but the phase angle reaches -180° at infinite frequency. 

Two special cases which occur in systems of this kind will now be consid- 

ered. In Appendix 1 it is shown that for pressure ratios across a restriction less 

than about 0. 528, the flow is no longer dependent on downstream pressure; that 

is, in Appendix 1, kx = ° and in the present problem, k3 = o. This is the con- 

dition of a "choked" control valve in the present system, which results in a great 

simplification of the transfer function. Under this condition the transfer function 

consists of first order lags as shown in Appendix 2. 

A second special case which is often encountered occurs when the constant 

ke is infinite. One problem to be solved in gas flow systems is the need for a. 

safety control which serves to keep the exhauster away from the surge region. 

This is accomplished by the recirculation surge valve shown in Appendix 2. 

Suppose this valve allows sufficient flow so that the exhauster is just at surge; 

that is, ke = oo. Then the system is again characterized by first order lags. 

(It should be noted that the problem of surge control can be attacked using the 

same governing laws.) 

The Distributed Parameter Transfer Function 

The distributed parameter description of plant response adds what the lumped 

parameter description fails to express—the spatial effects. Perhaps the most 

enlightening picture of the distributed system can be drawn from an examination 
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of the physical interpretation of the solution to the partial differential equations. 

Equations (32) and (33) and more generally,  equations (45) and (46) express this 

general solution.   Allowing the Laplace operator in equation (46) to take on its 

y 
general   complex form, the term    (he s2 + res) 2     can be expressed as the com- 

plex number o + jß .    Then equation (46) can be written as 

.    PW  =  E* eax e>ßx+ F* e ~ax e~Jßx. 

The first term of this expression represents a quantity that increases in 

magnitude and increases in phase as * increases. This term must, then, rep- 

resent the contribution to the pressure change which originates at the point * = L , 

since it is logical to surmise that as a pressure disturbance travels toward x = o 

from x = L it experiences an attenuation and. a time lag. By the same argument 

it can be concluded that the latter term in the expression, which decreases in 

magnitude and phase as x increases, must originate at the point, x = o. Thus, 

if a disturbance such as the flow disturbance previously mentioned originates at 

* = o, then all terms in the solution containing e~ax e~iPx represent the origi- 

nal disturbance and successive reflections from x = o, whereas the terms con- 

taining eax   . e'P*must represent the successive reflections from the point x = L. 

A number of special cases of the distributed parameter solutions may be 

treated, each of which adds to the understanding of a gas flow system. ]VIost of 

these, however, are treated with other purposes in mind than control. Examples 

are theclosedand open-end organ pipe, whichinour interpretationrepresentprob- 

lems of infinite and zero terminal impedance Z, the characterized line(Z ="\J—), 

and the infinite line (e~a*= o) as treated in electrical transmission-line studies 

and in the pneumatic instrument problem in which a long instrument line is ter- 

minated in an instrument volume. Most of these treatments consider only the 

resistanceless case such as was done in connection with the simple system of 
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Fig. 5.   Space will not be given here to these special cases since they are amply 

treated in textbooks and reports. 

Consideration of the resistance term has not been discussed. The effect 

of including the parameter can be understood most easily by numerical solution 

of the system represented in Fig. 5. This has been done in Appendix 3, where 

the calculated response curves are given. It is seen that the effect of the re- 

sistance is to smooth out the peaks and valleys in the frequency response. The 

numbers used in the calculations were chosen for ease of computation. 

NATURE OF THE  PARAMETERS 

The properties of gas flow systems are the pneumatic capacitance, inertance 

and resistance terms (C, c, h, and r), and the perturbation constants--the partial 

derivatives evaluated at points denoted by k. These properties determine the sys- 

tem parameters, which are the gains, time constants, and propagation constants 

of the response equations. Considerable information can be gained about gas flow 

systems from a study of these properties and parameters. 

Lumped Parameter High Frequency Approximation 

In equation 27, for the region where rs (or rja) is large compared to unity, 

then 

p (ico)   = 

: (;<D) jCa) 

The magnitude is -p— and the log magnitude vs log frequency plot is simply a 

straight line of slope, -1. Now, the property C ( ——-) does not change with op- 

erating point (Pss   and   Wss ),  and thus the high frequency portion of the frequency 
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response remains fixed. The system of Appendix 2 exhibits this same property 

also, where it can be shown that for high frequencies 

In fact, it can be shown that for all gas flow systems, using only the lumped pa- 

rameter description, the high frequency region of the frequency response remains 

fixed and only the low frequency region changes with operating point. 

For ease of plotting the frequency response, it is convenient to know the 

value of the point on the high frequency asymptote. The frequency at which the 

high frequency approximation log magnitude vs log frequency plot crosses unit 

magnitude is mt = — = Y . Now, since 0 is absolute temperature, <u, does 

not shift appreciably with temperature. The volume is, then, the determining 

factor in the location of w,. 

The Perturbation Constants 

The use of the theory of small perturbations in'system analysis is becoming 

widespread. Probably the largest field of use is in the aerodynamics of air- 

frames where the partial derivatives, or perturbation constants when evaluated 

at a point, are known as stability derivatives. The evaluation of these stability 

derivatives of airframe dynamics is one of the principal projects of wind tunnel 

testing. The perturbation constants of the valves and compressors, for accurate 

analysis, must also be taken from experiment. However, one desires to be able 

to express them analytically. For a number of systems this can be done, as is 

shown for a control valve in Appendix 1. 

The Distributed Parameters 

Pneumatic resistance,  capacitance, and inertance derive their names from 

their similarity to the equivalent electrical terms.    The form of the resistance 

varies greatly with the system. For large ducts the only resistance may be due 
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to the geometry of the system,  such as tees, elbows, expansions or contractions. 

It is sometimes  sufficient to consider the total resistance  as being distributed 

evenly over the whole length.    The inertance term (—-—)  becomes much larger 
A0 S 

for small diameter tubes than for large ducts, while for the capacitance term 

A   e (—3~)   just the opposite is true, 
u 

Through the entire treatment the velocity of propagation term plays a major 

role.    This is true also for the lumped pneumatic capacitance   (G = —— =   L   °-$ 
yP.® u2 

and thus C = Lc) .    The equivalence of the speed of sound in the pneumatic sys- 

tem and the speed of light in the electrical system should also be noted. 

USE OF THE ANALYSIS IN CONTROL PROBLEMS 

A number of factors influence the manner of analysis of gas flow systems. 

A brief cursory analysis of a system which already exists will reveal the basic 

properties. The magnitude of the largest volume and rough knowledge of tem- 

perature, pressure, and flow determine the largest and smallest time constants 

to be encountered. The shape of the system and its approximate length and re- 

flection times quickly determine the critical frequencies; and, in fact, if one 

knows the design Mach number it becomes apparent immediately whether other 

than a lumped constant analysis need be considered. 

In the design of new systems the requirements of the system determine what 

properties should be designed into it and which should be deleted for best per- 

formance. Thus, if it is required that the set point pressure in a system change 

rapidly, the time constant must be small and hence the volume small, whereas for 

systems in which it is required that pressure changes to disturbances be small, a 

large volume is dictated.   In all cases it is desired that the volumes be short in 
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length and large in cross section, thus eliminating distributed parameter effects 

as much as possible. 

A detailed knowledge of the system transfer function with fairly accurate 

quantitative knowledge of the gains and time constants is necessary in control sys- 

tem design. If wj /<uc is small, the lumped parameter expression is sufficient; 

if wfc /<yc is large, it is necessary at least to determine a,c . Further information 

about the distributed parameter response is interesting academically and for 

understanding gas flow systems but does not add information helpful in control 

system design. It is sufficient to know that at a frequency equal to2cücthe phase 

shift is already 180°, and hence a stability limit is reached. Present knowledge 

does not contribute a solution to this stability problem. 

A convenient and informative method of presenting the variation of plant pa- 

rameters is to "map" them on a pressure-weight flow plot. Consider, for ex- 

ample, the time constant in the simple system,   r = C/klm   This maybe reduced to 

P --*»!.   W 

which, for constant temperature, consists of a family of straight lines on the 

pressure-flow map. The constants of the system of Appendix 2 maybe mapped 

similarly although the relations may become quite complicated at times. 

With a knowledge of the order of the lumped parameter transfer function, 

the magnitude of the gains and time constants, and the distributed parameter cri- 

tical frequencies, the control system designer can determine his controller com- 

ponents, the speed of response required of valves and sensing elements, and the 

limits of the control. Then, a fairly accurate prediction of errors and speeds 

of response to different forcings can be made. 
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APPENDIX 1 

COMPRESSIBLE  FLOW THROUGH A CONTROL VALVE 

The controlled area of a restriction, here referred to as a control valve, 

is nearly always the final control element in a gas flow system. The system de- 

signer must, then, have a fairly accurate knowledge of the behavior of the flow 

through restrictions, A qualitative knowledge (e. g,, the flow is dependent on the 

pressure ratio, the area and temperature) is not sufficient; it is also necessary 

to know quantitatively how the flow is dependent on the variables. 

A convenient manner of expressing this dependence is by a measure of the 

deviation of the actual, measured flow from a general, ideal relationship.   That is 

Wa  = Cf Wt , (68) 

where Cr is a "flow coefficient" and subscripts a and * represent actual and the- 

oretical flows, respectively. 

The ideal flow relationship is derived in most texts on engineering thermo- 

dynamics (Ref. 3) from consideration of the continuity equation, the state and 

process equations of an ideal gas, and the general energy equation. A brief 

derivation of this ideal expression is given in this appendix. 

The continuity equation can be expressed as 

Px 4« vx   =  p 1Al Vl   = p2 A, v3   = W , (69) 

where p is density, A is open area, and v is velocity. The equation of state, 

p = P/R®, and the expression for an adiabatic change of state, i.px/px) = iPJPx )y » 

are also of use. The general energy equation can be written, for the stations 

* and *  as    shown  on   Fig.  9,   on a "per pound of fluid flowing" basis,  as 

3 2 

P, V, - Px Vx   + JQ + Work = J(EX  - EJ +  - ~ Vi   , (70) 
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FIG. 9.    SCHEMATIC OF RESTRICTION 

where Q is heat added, E is internal energy and / is the heat-work conversion 

coefficient. If the process is adiabatic, then there is no net flow of heat or work. 

The internal energy is given by Cv ®, and by use of the equation of state and the 

adiabatic relationship the energy equation can be reduced to 

y-1 

/ P„ 
1 (l+ I^L  )   VlPl R -(*) 

2 2 

g 

Remembering that    R = j cv (y-1)   equation (71) further reduces to 

y-1 -^ % 

/ 2VRR\ „  r _     / PJ 
vx <=  -l (^W-®']-* 

Now, using the continuity equation, 

L RTy^iyJ ®i 

■y + 1 

y My  My    , < ps (PA pJ   -\pj        + F@7 Vp./ 

further simplification yields 

2gy 

ß(y-l) \®J 
M*-®? 

(71) 

(72) 

(73) 

(74) 

If 4 j is large compared to k%, the denominator of expression (74) reduces to unity 

and the equation simplifies to 

Ax     yjR{y-l)  ^07      \px I     ~ \Pj 
(75) 
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P /   2   \   Ü~T 

which can be found by differentiation to occur at  -^ =   ( —=- V 
J Pi       \y + 1/ 
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, when plotted, exhibits a maximum 

y 

0.3 T 

(76) 

FIG. 10.   PLOT OF FUNCTION OF PRESSURE RATIO 

This value of the pressure ratio,  when substituted in equation (72) yields 

» 

' 2ygR& 
vx   = . / L_    + v* 

y + 1 

and since1 
.      v y - 1 . 

'  =@X   \^J~T~      ~@X \^~)   and   Vl<<V*    f0r   Al>>A*'then 

(77) 

% = ^JygRQx (78) 

which is the sonic velocity.    Once sonic velocity is achieved, no change in pres- 

sure occurring downstream of point x can be transmitted upstream and hence 

flow is independent of pressure ratios smaller than that indicated in equation (76). 

The flow for "choked" flows then reduces to 

4- - -Lt  • <™> AX V©j 

It is reasonable to suppose that the flow through a restriction will, after a 

fashion, obey the relationships (75) and (79). In fact, it seems that the flow re- 

lationship of an actual valve should differ from the theoretical expression by only 

a constant, the flow coefficient.    That is, from equation (68) , 
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wa = cf h    __ - f 
/e, £) (80) 

where A   and f (——J  have the obvious definitions. 

To be valid, this approach to the problem should be checked by experiment 

for each type of control valve. This check has been made for a "butterfly" type 

control  valve with very good agreement (Ref.  2). 

Equation (80) may be written as 

*a = fUx,Qx.Ps, P..). 

Taking the partial differential of W„ we obtain 

dW = dW dW dW 

d*x    * 
dAv  + -^— </©, +   jjp- dPx   +    ^~- dPt 

d®, 
dW 
3P, 

(81) 

or, by making certain definitions w = ka a + kß d - kx px   + klPl 

where 

(82) 

dA. ke = 
d® 

i_ JL 
2     © 

o = ao 

Px = dPx 

P, - <«\ 

°      *4 
_ f 
"4. 

.   .a/My      y ± 1 (P*\ 
= _ JE =    w yfM     y\Pj y    \PJ 

y + i 
y 

fct  = 
, " P. v y ) /M- _ /M*±± 

The partial derivatives as expressed here suggest a convenient method of quanti- 

tative evaluation of the perturbation constants at an operating point, W and Pt . 

The quantities kx and k% can be conveniently plotted in a dimensionless form as 

kPl/W   vs. px/Pt.   It is also convenient to plot the ratio of weight flow to choked 

weight flow -jp- which is m choked 

(-^)       -    3.89 / (**}     .     Thus,     ka 

which is E. can also be evaluated,  since   ha W 
ka   (choked) Wc 

=   3.89   f m. 
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The functions ka>kx> and kx are plotted in nondimensionalized form against 

Px /P, on Figs. 11a, lib and lie, respectively. It is of interest to note that the 

flow coefficient is absent from these expressions. 

It should be observed that the pressure Px is the "throat" pressure and that 

the pressure downstream of the throat may be greater than Px. This is consid- 

ered as a "recovery" and introduces some error when throat and downstream 

pressure are considered equal. 

FIG. 11 (a).   CHOCKED COEFFICIENT RATIO VS PRESSURE RATIO 

0.2 0.4 0.6 0.8 

FIG. 11 (b).   NON-DIMENSIONALIZED  A, VS PRESSURE RATIO 

1.0 
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0.2 0.4 0.6 0.8 

FIG. 11(c).   NON-DIMENSIONALIZED kx VS PRESSURE RATIO 
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APPENDIX 2 

DETERMINATION OF  THE  TRANSFER FUNCTION OF A 
TYPICAL GAS FLOW SYSTEM 

The system to be considered in this appendix may represent a number of 

different systems, but the author is familiar with it as the exhaust side of an 

engine-test plant. Referring to the symbolic diagram, Fig. 12, a quantity of 

gas Wi enters volume 1, which is some geometry of ducting. A quantity of gas 

Wi also enters volume 1 through the control bleed-in valve, the pressure Px 

being less than Pa. The total flow then enters volume 2 through the throttle 

control valve and is exhausted through a compressor to a pressure Pa . A part 

of the total flow Ws is recirculated around the exhauster and back into volume 

2 for purposes of compressor surge control. The problem is to determine the 

dynamic relationship of the pressure in volume 1 as a function of an inlet flow 

disturbance and disturbances in the three valve areas. The methods of the 

lumped parameter analysis given in this paper will be used. Only the governing 

equations and the final transfer function will be given. 

pQe„ 

'(3) If 

COj p,v, e, 

(2) 
% 

Volume 

Throttle 
Valve 

W^)^— 
wt 

Exhauster 

FIG. 12.    SCHEMATIC OF TYPICAL GAS FLOW SYSTEM Surge 
Valve 
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Conditions:       0t = 0a 

Pa and 0a are constant. 

Governing Equations: 

P, =         1      (Wt + Wb - Wt); p, =   —i («4 +  wh - wt\                   (84) 

n „   JV* /   t^-\,wb = _*lPl + H % (85) 

Wt    =   _^J / ./_Lj; wt = AjPl + A,», - k,Pl (86) 

p, = —L_ (IT, + rs - JB); Pa = -J_ (wt + ws - we ) (87) 
Cas 

We = /(P.);-we - &eP* (88) 

<£)'■ 
KP /4 

Ws = —— /   i~ ) ;  •».  -  Asas  - k,Pl (89) 

Transfer Function:   Response of P, to changes in IT,- , ij , i( ,  4S  is: 

P|W  =    JUS    S + l)    «t     +        g& (r-   S + 1}  a,  -     *' <S   ^ + *> a, 
-L sa+   —?-£ s  +  1 J_5* + JL_£ s + 1 -J-s1 +A{M1 

 as   • 

V s*   +  -A_ £ s  +   1 
*    "       ' Al 

<"/. 

or, 

#i   (r, s + 1) w Kh (rts + 1 ) Kt h«  +  1) &s 
P'(s) "   (r3s+l)(Us + l)

Wi   +  (r"s ; 1) (r4 « + 1)   °6   ~ <r, « + l)(r4 * + 1)   * +   (r, * + l)(r4 « + 1) °* 
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Parameters: 

Ki - 

h 

K, = 

K„ 

kt +  k5   +  &c 

l"*S "'i"'5      "T"    Ajftg     '      "'2"'j      +     fCniCg 

h (*, + AS + *e) 
AjA, + A^,   + A,Ae + AJAJ + A2AC 

Aj (A,   + Ae) 

A,A3 + AtA,   + A,Ae + A,A, + A,Ae 

A,Aj + AjA,   + A,Ae + A,A, + A,Ae 

sTcj2 

< = J- c, 
(A,  + As   + Ae) + . + Aa) 

Ai  rfjftj    T    n/^Kg     x    '^x'tfi     •     ÄJÄJ     T    *"2   € 

C 
*S + A* 

'» »  '4    = 

A, + Aj + Ae       A, + A, 

C, 
iVa 

(A, + A, + Ae       At + A,Y    4 A,A, 

c,.     cr)+~c^~ 
% 

Special Case of a Choked Control Valve; 

A, - 0 

rs  = r2 = r, ;    r4 

Ks 

C, 
/Cj     T    /Cj 

ft| 4*   Aj 
Kfc = *6 

/Cj    T     A2 
>  Kf = *« 

A, + Aa 

«<i   +  ——«ft 
K 

«"»(*) r4 s + 1 TA s + 1 r4 s + 1 
t a. 

,  K8 = 0 
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Special Case of Exhauster at Surge Flow: 

52 

*c *= °° 

r   _T   _n.   l    -0    ^   -      C' ri = Ti    u> —    u> —    T—r 

1 kh k 

kl  +  k2 ' &, + k3 kl  +  k% 

P,(«) Ki H Kt 

U>1 (s) TSS   +   1 TSS  +   1 TSS   +   1 



AEDOTR-55-11 

APPENDIX 3 

NUMERICAL CALCULATION OF THE  RESPONSE  OF  A SIMPLE  SYSTEM 

In order to show more definitely the response of a system and the effect of 

different properties of the system, the response  of  the   system   of  Fig.  13   is 

computed.    The   numbers   have been chosen so as to minimize the computations. 

The ft-lb-sec unit  system is used. 

L 

Wss + WJ WSs + w© 

FIG. 13.   SCHEMATIC OF A SIMPLE SYSTEM 

The properties and parameters chosen for the system are as follows: 

Properties 

Duct length,   L = 50 rr ft 

Duct cross-sectional area, A0 = 2000 
ng it 

Steady state pressure,  Pss = 1000 lbs/ft * 

Steady state flow,   Wss = 100 lbs/sec 

Steady state temperature, ®ss = 416°R 

Velocity of wave propagation,  u = 1000 ft/sec 

Lumped pneumatic capacitance,  c =     „a   = 0.1 ft1 

Distributed pneumatic capacitance,  c =   -^r2- = — x 10" ft 

Distributed pneumatic inertance,  h = -J^-= -~-x 10" -p -  sec 
S— 

Distributed pneumatic resistance, r = -^- = Z- x 10° -41^ 
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Parameters 

Terminal pneumatic impedance, Z = -£— = 10 sec/ft2 

Lumped parameter time constant, r = ~* = 1 sec 

Distributed parameter critical frequency,     <uc  =-£j- = 10 rad/sec 

Lumped Parameter Frequency Response 

The lumped parameter transfer function can be written numerically as 

p(s) 1 10 (90) 
u>i (s)       k0 (r s + 1)      s + 1 

or replacing s by ja , the frequency response is 

P (A»)    .,        10     . (91) 
w- (ja) ja   +   1 

The frequency response is shown on Figs. 14 and 15 for the log-log plot of 

magnitude ratio vs frequency and the semi-log plot of phase angle vs frequency, 

respectively. 

Distributed Parameter Frequency Response 

The   distributed  parameter   frequency  response  transfer   function   can be 

written as .    . , 
P (*./<")   =   ft + if2 (92) 

u>i (x, jm) f3 + ;/4 

where the functions   f are given by 

R a 
f.  =  Z cos (ßa;)cosh (ax) +  -£—     cos (Rx) sinh (ax) +    sin (ß*) cosh (ax) 
" ^ a>c ate 

f,  =  Z sin (ß*) sinh (ax) +   —— sin (Bx) cosh (ax) -      cos (Rx) sinh (ax) 

U =  cos (ßL) cosh (aL) +   -fi^fr <=os (ßL) sinh (aL) - £ ™°°   sin (ßL) cosh (aL) 

L  =  sin (ßL) sinh (aL) +     \ "ffi     sin (ßL) cosh (aL) +  f2 f°    cos (ßL) sinh (aL) . 
a   + p a   ~t- p 
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The numbers a and ß are given by 

ß  =\y- coc   [ah +   V<a! hz  + ra  1 

a = arc 
2/3 

Case 1:   r = 0 

Under this special case the functions simplify greatly; 0 = — and o = 0,  and 

the functions / become 

/t = Z COB /3* = 10 cos 1000 

U =    -^-sinjS* =   -£- (DAS 
sin 2       " 1000 

/,  =  cos ßL =  cos 0.05 fr«») 

/4 =  —s— sin /3L  «=        sin 0.05 TTO) , 
p tr 

Two positions of * are of interest,  x «= 0 and * =■ L.    Under these conditions the 

response curves are shown in Figs. 14   and 15. 

Case 2:   <• 4 0 

For this more general case the response is more difficult to calculate. Qur 

choice of r makes the calculations simpler however. Since r was chosen such 

that r= k, the expressions reduce to 

ß =    -^- yj-%- a>U>+   VaM) 

1       <        2a> 
2i*    V^TT   W + 1 

Point by point calculation of the response then yields the curves   shown  in  Figs. 

14 and 15. 

Lumped Parameter Indicial Response 

The solution of the transfer function (90) for to,- (s) ■ -~-, a unit step function, 

is 

pU) _ J^i(i_e_r")= 10(l-e-*)# (93) 

This response is plotted as a function of time on Fig.   16. 
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Distributed Parameter Indicial Response 

The indicial response for the distributed, resistanceless system, is given 

by the expression 
X 

PC i) -Z|«,| |l-|(l-8)   [i+/^£|.^ J[l_z«.]"j (94) 

(2B L - x) {-jL= (2(n + 1) L -x n = 0, 1, 2, — , 
\\Jhc     \ 

\pL~ 
where S is defined by the ratio     s     .    For the two positions of interest,  « = 0 

and x = L, the responses for the unit step input are 

at * = 0 

P(0, i)  _ 1 . (1,-ar*1    ,x    (20-,r)w + 1 (95) 

Zj (1 + S)n (20 + ff)*» 

2re 
(^(2U + 1) 

at x = I 

P^f), l -/!=-* Y- l-f20-ffV (96) 
zt        \i + §y     \2o + it) 

(2n-1)(-^((2n + 1) 

This plot also appears on Fig.  16 

Conclusions 

From these calculated responses one gets an insight into the nature of gas 

flow systems. The effect of resistance on the frequency response should be 

particularly noted. It would be well also to have the indicial response for the 

case of a finite resistance but this calculation would be very difficult. 

The following conclusions and observations can be made on the frequency 

response of this  system: 

1.     The departure of the distributed parameter response from the lumped 
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parameter response becomes appreciable at about half way between the 

lumped parameter break frequency and the frequency at which the first 

quarter wave length occurs. 

2. The effect of resistance on the distributed parameter response is to de- 

crease the magnitude and round off the peaks of the periodic maxima and 

minima. 

p 
3. The impedance (equal to the magnitude ratio -^ , which is seen at the 

wi 

inlet of the system) is increased by an amount equal to the total line re- 

sistance (r L). The outlet impedance does not experience this effect. This 

is shown by the positions on the curves on Fig. 14 at <» ■= 0.1 radians per 

second. 

The   following   conclusions   and  observations   can  be   made on the indicial 

response: 

1. At the outlet, no effect of a disturbance at the inlet is felt until a time 

O.05ff sec, which is the time required for the transmission of a pressure 

wave.   Thereafter steps are   O.lrr   sec apart, the time required for a  pres- 

sure wave to traverse the length in both directions. 

2.     The pattern of the successive steps  shows remarkable resemblance to 

the first order response. 
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100 „ . .        . 
-—■—— L.R, st. line approximation  D.P.,r = 0, inlet 
 L.R, actual  D.p'r* 6, outlet 

50    —-T-~ D.R,r = 0Y outlet, . •-. D.R,r^O, inlet 

L.R = Lumped Parameter 
D.R = Distributed Parameter 

Frequency 
5 SO 

rod. /sec. 

FIG. 14.    FREQUENCY RESPONSE - MAGNITUDE RATIO 
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Frequency 
5 10 

rod./sec. 

FIG. 15.    FREQUENCY RESPONSE - PHASE ANGLE 
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FIG. 16.    1NDICIAL RESPONSE 


